论文标题

半旋风和广义复合几何形状的纤维

Fibrations in semi-toric and generalized complex geometry

论文作者

Cavalcanti, Gil R., Klaasse, Ralph L., Witte, Aldo

论文摘要

本文研究了自刺边界Lefschetz纤维与广义复合结构之间的相互作用。我们表明,这些振动是由半多形几何形状中的矩图产生的,并使用它们使用GOMPF- thurston方法来构建自缝的稳定的广义复合物四个manifolds。这些结果在几个先前已知的广义复合歧管示例上带来了进一步的结构。此外,我们还表明,这些纤维与取连接的总和兼容,并使用它来证明在这些振动中发生的两种类型的奇点之间的奇异性贸易结果。

This paper studies the interplay between self-crossing boundary Lefschetz fibrations and generalized complex structures. We show that these fibrations arise from the moment maps in semi-toric geometry and use them to construct self-crossing stable generalized complex four-manifolds using Gompf--Thurston methods for Lie algebroids. These results bring forth further structure on several previously known examples of generalized complex manifolds. We moreover show that these fibrations are compatible with taking connected sums, and use this to prove a singularity trade result between two types of singularities occurring in these fibrations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源