论文标题

多腿机器人在复杂地形中的进化步态转移

Evolutionary Gait Transfer of Multi-Legged Robots in Complex Terrains

论文作者

Jiang, Min, Chi, Guokun, Pan, Geqiang, Guo, Shihui, Tan, Kay Chen

论文摘要

机器人步态优化是在各种内部和外部约束下生成最佳控制轨迹的任务。鉴于控制空间的较高维度,对于在复杂且未知的环境中行走的多腿机器人来说,这个问题尤其具有挑战性。现有文献通常将步态产生视为一个优化问题,并从刮擦中解决了在特定环境中行走的机器人的步态优化。但是,这种方法并不考虑使用预先获得的知识,这对于提高复杂环境中运动的质量和速度可能很有用。为了解决该问题,本文提出了一个基于转移学习的多目标步态优化的进化框架,名为TR-GO。这个想法是通过使用转移学习技术初始化高质量的人群,因此任何基于人群的优化算法都可以无缝地集成到该框架中。优势在于,生成的步态不仅可以动态地适应不同的环境和任务,还可以同时满足多个设计规范(例如,速度,稳定性)。实验结果显示了基于三种多目标进化算法的步态优化问题的拟议框架的有效性:NSGA-II,RM-MEDA和MOPSO。当将预先获得的知识从普通的地形转移到各种倾斜和坚固的知识时,与非转移情况相比,提议的TR-GO框架将最小的进化过程加速至少3-4倍。

Robot gait optimization is the task of generating an optimal control trajectory under various internal and external constraints. Given the high dimensions of control space, this problem is particularly challenging for multi-legged robots walking in complex and unknown environments. Existing literatures often regard the gait generation as an optimization problem and solve the gait optimization from scratch for robots walking in a specific environment. However, such approaches do not consider the use of pre-acquired knowledge which can be useful in improving the quality and speed of motion generation in complex environments. To address the issue, this paper proposes a transfer learning-based evolutionary framework for multi-objective gait optimization, named Tr-GO. The idea is to initialize a high-quality population by using the technique of transfer learning, so any kind of population-based optimization algorithms can be seamlessly integrated into this framework. The advantage is that the generated gait can not only dynamically adapt to different environments and tasks, but also simultaneously satisfy multiple design specifications (e.g., speed, stability). The experimental results show the effectiveness of the proposed framework for the gait optimization problem based on three multi-objective evolutionary algorithms: NSGA-II, RM-MEDA and MOPSO. When transferring the pre-acquired knowledge from the plain terrain to various inclined and rugged ones, the proposed Tr-GO framework accelerates the evolution process by a minimum of 3-4 times compared with non-transferred scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源