论文标题
多参数量子计量学的概括控制
Generalizable control for multiparameter quantum metrology
论文作者
论文摘要
量子控制可以用于量子计量学以提高未知参数估计的精确限制。但是,最佳控制通常取决于参数的实际值,因此需要根据这些参数的更新估计来适应设计。传统方法(例如梯度上升脉冲工程(葡萄))需要重新运行遇到的每组新参数,使优化成本高昂,尤其是在涉及许多参数的情况下。在这里,我们研究了最佳控制的普遍性,即最佳控制,可以在一系列参数中系统地更新,成本最低。如果控制通道可以由于参数的变化而完全扭转哈密顿量的变化,我们提供了一种分析方法,该方法有效地为任何参数生成了最佳控件,从葡萄或增强学习发现的初始最佳控制开始。当限制控制渠道时,分析方案无效,但是增强学习仍然保留了一定程度的普遍性,尽管范围更窄。如果无法分解为可用的控制渠道的变化,则在增强学习或分析方案中都找不到概括性。我们认为,强化学习的概括是通过类似于分析方案的机制。我们的结果提供了有关多参数量子计量学中最佳控制的何时以及如何概括的见解,从而促进了多个参数的最佳量子估计的有效实现,尤其是对于具有参数范围范围的系统集合。
Quantum control can be employed in quantum metrology to improve the precision limit for the estimation of unknown parameters. The optimal control, however, typically depends on the actual values of the parameters and thus needs to be designed adaptively with the updated estimations of those parameters. Traditional methods, such as gradient ascent pulse engineering (GRAPE), need to be rerun for each new set of parameters encountered, making the optimization costly, especially when many parameters are involved. Here we study the generalizability of optimal control, namely, optimal controls that can be systematically updated across a range of parameters with minimal cost. In cases where control channels can completely reverse the shift in the Hamiltonian due to a change in parameters, we provide an analytical method which efficiently generates optimal controls for any parameter starting from an initial optimal control found by either GRAPE or reinforcement learning. When the control channels are restricted, the analytical scheme is invalid, but reinforcement learning still retains a level of generalizability, albeit in a narrower range. In cases where the shift in the Hamiltonian is impossible to decompose to available control channels, no generalizability is found for either the reinforcement learning or the analytical scheme. We argue that the generalization of reinforcement learning is through a mechanism similar to the analytical scheme. Our results provide insights into when and how the optimal control in multiparameter quantum metrology can be generalized, thereby facilitating efficient implementation of optimal quantum estimation of multiple parameters, particularly for an ensemble of systems with ranges of parameters.