论文标题

理性$θ$ - 平行平行图信封通过$θ$ - 省椭圆曲线

Rational $θ$-parallelogram envelopes via $θ$-congruent elliptic curves

论文作者

Salami, Sajad, Zargar, Arman Shamsi

论文摘要

我们通过定义一个正整数$ n $的理性$θ$ - 并行图信封的概念来引入$θ$ - 综合数字的新概括,其中$θ\ in(0,π)$是与理性余弦的角度。然后,我们使用代数曲线的算术更加紧密地研究了与有理$θ$ - 平行四边形信封有关的一些问题。我们的结果推广了T.〜ochiai的最新工作,其中仅考虑了$θ=π/2 $的情况。此外,我们在他的论文中回答了公开的问题,以及他们对任何毕达哥拉斯角度的概括。

We introduce a new generalization of $θ$-congruent numbers by defining the notion of rational $θ$-parallelogram envelope for a positive integer $n$, where $θ\in (0, π)$ is an angle with rational cosine. Then, we study more closely some problems related to the rational $θ$-parallelogram envelopes, using the arithmetic of algebraic curves. Our results generalize the recent work of T.~Ochiai, where only the case $θ=π/2$ was considered. Moreover, we answer the open questions in his paper and their generalizations for any Pythagorean angle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源