论文标题

关于$ \ varepsilon $ -neighbourhoods of Planar套件的边界:奇异性,全球结构和曲率

On Boundaries of $\varepsilon$-neighbourhoods of Planar Sets: Singularities, Global Structure, and Curvature

论文作者

Lamb, Jeroen S. W., Rasmussen, Martin, Timperi, Kalle G.

论文摘要

我们研究了封闭的$ \ varepsilon $ -neighBourhoods $ e_ \ e_ \ varepsilon = \ {x \ in \ mathbb {r}^2 \,: \ subset \ mathbb {r}^2 $。我们开发了一种用于分析边界的新技术,并使用它来获得$ \ partial e_ \ varepsilon $上的奇异性分类(即〜非平滑点)分为八个类别。我们表明,一组奇异性是可数的,或者是可数集和封闭的,完全断开的,无处浓密的集合的不交联。此外,我们以本地几何形状来表征那些$ \ varepsilon $ -neighbourhoods的补充$ \ edline {\ mathbb {r}^2 \ setMinus e_ \ varepsilon} $是一个积极触及的。众所周知,对于所有有限的$ e \ subset \ mathbb {r}^d $和所有$ \ varepsilon> 0 $,边界$ \ partial e_ \ varepsilon $ is $(d-1)$ - rectiffififiable。为此,我们确定了一个足够的条件,使边界可以均匀地进行整合,并提供了平面$ \ varepsilon $ -neighbourhood的示例,该示例不是常规的。就拓扑结构而言,我们表明,对于紧凑型集合$ e $和$ \ varepsilon> 0 $界限$ \ partial e_ \ varepsilon $可以表示是乔丹曲线的最无限结合的截然不同的结合,乔丹曲线的结合,可能是不可或缺的,完全是不成比的,是完全不合时宜的。最后,我们表明曲率在边界的约旦曲线子集上几乎无处不在。

We study the geometry, topological properties and smoothness of the boundaries of closed $\varepsilon$-neighbourhoods $E_\varepsilon = \{x \in \mathbb{R}^2 \, : \, \textrm{dist}(x, E) \leq \varepsilon \}$ of compact planar sets $E \subset \mathbb{R}^2$. We develop a novel technique for analysing the boundary, and use this to obtain a classification of singularities (i.e.~non-smooth points) on $\partial E_\varepsilon$ into eight categories. We show that the set of singularities is either countable or the disjoint union of a countable set and a closed, totally disconnected, nowhere dense set. Furthermore, we characterise, in terms of local geometry, those $\varepsilon$-neighbourhoods whose complement $\overline{\mathbb{R}^2 \setminus E_\varepsilon}$ is a set with positive reach. It is known that for all bounded $E \subset \mathbb{R}^d$ and all $\varepsilon > 0$, the boundary $\partial E_\varepsilon$ is $(d-1)$-rectifiable. Improving on this, we identify a sufficient condition for the boundary to be uniformly rectifiable, and provide an example of a planar $\varepsilon$-neighbourhood that is not Ahlfors regular. In terms of the topological structure, we show that for a compact set $E$ and $\varepsilon > 0$ the boundary $\partial E_\varepsilon$ can be expressed as a disjoint union of an at most countably infinite union of Jordan curves and a possibly uncountable, totally disconnected set of singularities. Finally, we show that curvature is defined almost everywhere on the Jordan curve subsets of the boundary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源