论文标题
在零/非零背景下,Gerdjikov-Ivanov方程的逆散射变换和多个高阶杆解决方案
Inverse scattering transform and multiple high-order pole solutions for the Gerdjikov-Ivanov equation under the zero/nonzero background
论文作者
论文摘要
在本文中,通过基质riemann-hilbert(RH)方法,考虑了具有零和非零边界条件的Gerdjikov-ivanov方程的反向散射变换。孤子溶液的公式是通过劳伦(Laurent)扩展到RH问题来确定的。我们使用的方法与使用简单极点的计算解决方案不同,因为这里的残基条件很难获得。分别获得具有一个高阶杆和$ n $多重高阶杆的多个孤子解决方案的公式。进一步分析了高阶极溶液的动力学特性和特性。
In this article, the inverse scattering transform is considered for the Gerdjikov-Ivanov equation with zero and non-zero boundary conditions by a matrix Riemann-Hilbert (RH) method. The formula of the soliton solutions are established by Laurent expansion to the RH problem. The method we used is different from computing solution with simple poles since the residue conditions here are hard to obtained. The formula of multiple soliton solutions with one high-order pole and $N$ multiple high-order poles are obtained respectively. The dynamical properties and characteristic for the high-order pole solutions are further analyzed.