论文标题

社交媒体数据揭示了公共消费者看法的信号

Social media data reveals signal for public consumer perceptions

论文作者

Pokhriyal, Neeti, Dara, Abenezer, Valentino, Benjamin, Vosoughi, Soroush

论文摘要

研究人员使用社交媒体数据来估计有关公共行为的各种宏观经济指标,主要是一种减少调查成本的方式。引用最广泛的经济指标之一是消费者信心指数(CCI)。过去的许多研究都集中在使用社交媒体,尤其是Twitter数据来预测CCI上。但是,根据最近的一项综合调查,当对这些模型进行了新的数据测试时,强烈的相关性消失了。在这项工作中,我们通过提出一个基于高斯流程回归的强大的非参数贝叶斯建模框架来评估使用社交媒体数据测量CCI的真正潜力的问题(提供了与之相关的估计值和不确定性)。我们框架不可或缺的是一种原则性的实验方法,它证明了如何使用数字数据来减少调查的频率,因此只需要定期进行调查才能校准我们的模型。通过广泛的实验,我们展示了不同微型决策的选择,例如平滑间隔,各种类型的滞后等如何与结果相关。通过使用Reddit的Decadal Data(2008-2019),我们表明,CCI的月度和每日估计确实可以至少提前几个月可靠地估计,并且我们的模型估计值远远优于现有方法所产生的模型。

Researchers have used social media data to estimate various macroeconomic indicators about public behaviors, mostly as a way to reduce surveying costs. One of the most widely cited economic indicator is consumer confidence index (CCI). Numerous studies in the past have focused on using social media, especially Twitter data, to predict CCI. However, the strong correlations disappeared when those models were tested with newer data according to a recent comprehensive survey. In this work, we revisit this problem of assessing the true potential of using social media data to measure CCI, by proposing a robust non-parametric Bayesian modeling framework grounded in Gaussian Process Regression (which provides both an estimate and an uncertainty associated with it). Integral to our framework is a principled experimentation methodology that demonstrates how digital data can be employed to reduce the frequency of surveys, and thus periodic polling would be needed only to calibrate our model. Via extensive experimentation we show how the choice of different micro-decisions, such as the smoothing interval, various types of lags etc. have an important bearing on the results. By using decadal data (2008-2019) from Reddit, we show that both monthly and daily estimates of CCI can, indeed, be reliably estimated at least several months in advance, and that our model estimates are far superior to those generated by the existing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源