论文标题

学习非lambertian光度立体声的框内和内部表示形式

Learning Inter- and Intraframe Representations for Non-Lambertian Photometric Stereo

论文作者

Cao, Yanlong, Ding, Binjie, He, Zewei, Yang, Jiangxin, Chen, Jingxi, Cao, Yanpeng, Li, Xin

论文摘要

光度法立体声提供了一种基于在不同照明方向下捕获的多个强度图像的高保真3D重建的重要方法。在本文中,我们提出了一个完整的框架,包括多层源照明和采集硬件系统以及两阶段的卷积神经网络(CNN)体系结构,以构建框架间和内部表示形式,以准确地估算非lambertian对象的正常估计。我们通过实验研究了许多网络设计替代方案,用于识别用于光度计算问题问题的最佳方案,以部署框架间和内部特征提取模块。此外,我们建议利用易于获得的对象面膜消除框内空间卷积中无效背景区域的不良干扰,从而有效提高了黑暗材料或铸造阴影的表面正常估计的准确性。实验结果表明,就准确性和效率而言,提出的掩盖的两阶段光度立体CNN模型(MT-PS-CNN)对最先进的光度立体声技术的表现都具有优惠的效果。此外,所提出的方法能够预测复杂几何形状的非lambertian对象的准确且丰富的表面正常细节,并在稀疏和密集的照明分布中捕获的输入均具有稳定的输入。

Photometric stereo provides an important method for high-fidelity 3D reconstruction based on multiple intensity images captured under different illumination directions. In this paper, we present a complete framework, including a multilight source illumination and acquisition hardware system and a two-stage convolutional neural network (CNN) architecture, to construct inter- and intraframe representations for accurate normal estimation of non-Lambertian objects. We experimentally investigate numerous network design alternatives for identifying the optimal scheme to deploy inter- and intraframe feature extraction modules for the photometric stereo problem. Moreover, we propose utilizing the easily obtained object mask to eliminate adverse interference from invalid background regions in intraframe spatial convolutions, thus effectively improving the accuracy of normal estimation for surfaces made of dark materials or with cast shadows. Experimental results demonstrate that the proposed masked two-stage photometric stereo CNN model (MT-PS-CNN) performs favourably against state-of-the-art photometric stereo techniques in terms of both accuracy and efficiency. In addition, the proposed method is capable of predicting accurate and rich surface normal details for non-Lambertian objects of complex geometry and performs stably given inputs captured in both sparse and dense lighting distributions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源