论文标题

API文档的要求:计算机视觉服务的案例研究

Requirements of API Documentation: A Case Study into Computer Vision Services

论文作者

Cummaudo, Alex, Vasa, Rajesh, Grundy, John, Abdelrazek, Mohamed

论文摘要

使用基于云的计算机视觉服务正在获得吸引力,开发人员通过熟悉的Restful API访问AI驱动的组件,而不需要协调大型培训和推理基础架构或策展人/标签培训数据集。但是,尽管这些API似乎很熟悉,但它们的非确定性运行时间行为和进化并不能与开发人员充分传达。因此,改进这些服务的API文档是最重要的广泛文档,促进了智能软件的开发过程。在先前的研究中,我们从21件开创性作品中提取了34个API文档文物,设计了五个关键要求的分类学,以生成高质量的API文档。我们以两种方式扩展了这项研究。首先,通过调查104个不同经验的开发人员,以了解哪些API文档文物对从业者最有价值。其次,通过在新兴的计算机视觉服务领域的案例研究中,确定这些高估的人工制品中的哪些是或没有得到充分记录的。我们确定:(i)软件工程文献中的几个差距,其中API文档的理解的各个方面未经过广泛的研究; (ii)行业供应商(相比之下)记录了伪像,以更好地为最终发展者服务。我们提供一组建议,以增强供应商和更广泛的研究社区的智能软件文档。

Using cloud-based computer vision services is gaining traction, where developers access AI-powered components through familiar RESTful APIs, not needing to orchestrate large training and inference infrastructures or curate/label training datasets. However, while these APIs seem familiar to use, their non-deterministic run-time behaviour and evolution is not adequately communicated to developers. Therefore, improving these services' API documentation is paramount-more extensive documentation facilitates the development process of intelligent software. In a prior study, we extracted 34 API documentation artefacts from 21 seminal works, devising a taxonomy of five key requirements to produce quality API documentation. We extend this study in two ways. Firstly, by surveying 104 developers of varying experience to understand what API documentation artefacts are of most value to practitioners. Secondly, identifying which of these highly-valued artefacts are or are not well-documented through a case study in the emerging computer vision service domain. We identify: (i) several gaps in the software engineering literature, where aspects of API documentation understanding is/is not extensively investigated; and (ii) where industry vendors (in contrast) document artefacts to better serve their end-developers. We provide a set of recommendations to enhance intelligent software documentation for both vendors and the wider research community.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源