论文标题

与对抗网络的图像合成:全面的调查和案例研究

Image Synthesis with Adversarial Networks: a Comprehensive Survey and Case Studies

论文作者

Shamsolmoali, Pourya, Zareapoor, Masoumeh, Granger, Eric, Zhou, Huiyu, Wang, Ruili, Celebi, M. Emre, Yang, Jie

论文摘要

生成的对抗网络(GAN)在各种应用领域(例如计算机视觉,医学和自然语言处理)中非常成功。此外,将物体或人转换为理想的形状成为甘恩斯的一项精心研究。甘斯是学习复杂分布以综合语义有意义的样本的强大模型。但是,在该领域缺乏全面的审查,尤其是缺乏一系列gans损失变化的评估指标,用于多样化图像产生的补救措施以及稳定的培训。鉴于当前的快速开发,在这项调查中,我们对图像合成的对抗模型进行了全面的综述。我们总结了综合图像生成方法,并讨论类别,包括图像到图像翻译,融合图像生成,标签到图像映射和文本对图像翻译。我们根据其基本模型组织文献,开发了与架构,约束,损失功能,评估指标和培训数据集有关的思想。我们提出了对抗模型的里程碑,回顾了各种类别中先前的作品的广泛选择,并就从基于模型到数据驱动的方法的开发路线进行了见解。此外,我们重点介绍了一系列潜在的未来研究方向。这篇评论的独特功能之一是,这些GAN方法和数据集的所有软件实现都已收集并在一个位置https://github.com/pshams55/gan-case-study提供。

Generative Adversarial Networks (GANs) have been extremely successful in various application domains such as computer vision, medicine, and natural language processing. Moreover, transforming an object or person to a desired shape become a well-studied research in the GANs. GANs are powerful models for learning complex distributions to synthesize semantically meaningful samples. However, there is a lack of comprehensive review in this field, especially lack of a collection of GANs loss-variant, evaluation metrics, remedies for diverse image generation, and stable training. Given the current fast GANs development, in this survey, we provide a comprehensive review of adversarial models for image synthesis. We summarize the synthetic image generation methods, and discuss the categories including image-to-image translation, fusion image generation, label-to-image mapping, and text-to-image translation. We organize the literature based on their base models, developed ideas related to architectures, constraints, loss functions, evaluation metrics, and training datasets. We present milestones of adversarial models, review an extensive selection of previous works in various categories, and present insights on the development route from the model-based to data-driven methods. Further, we highlight a range of potential future research directions. One of the unique features of this review is that all software implementations of these GAN methods and datasets have been collected and made available in one place at https://github.com/pshams55/GAN-Case-Study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源