论文标题

关于其差分差异操作员的杂形功能的唯一性

Uniqueness on Meromorphic function concerning their differential-difference operators

论文作者

Huang, XiaoHuang

论文摘要

在本文中,我们研究了异晶功能差异差异的独特性。我们证明了以下结果:让$ f $是$ρ_{2}(f)<1 $的非稳定meromorphic函数,让$η$为非零的复数数字,$ n \ geq1,k \ geq0 $ a $ a \ a \ a \ not \ equiv0,\ equiv0,\ equiv0,\ equiv0,\ equiv0,\ equiv0,\ equiv0,\ equiv0,\ equiv0,\ equiv0,$ f $ f $ f $ f $ f。如果$ f $和$(δ_η^{n} f)^{(k)} $共享$ 0,\ infty $ cm并共享$ a $ im,则$ f \ equiv(δ_η^{n} f)^{(k)} $,使用完全不同的方法来改善由于Chen-xu [1]。

In this paper, we study the uniqueness of the differential-difference of meromorphic functions. We prove the following result: Let $f$ be a nonconstant meromorphic function of $ρ_{2}(f)<1$, let $η$ be a non-zero complex number, $n\geq1, k\geq0$ two integers and let $a\not\equiv0,\infty$ be a small function of $f$. If $f$ and $(Δ_η^{n}f)^{(k)}$ share $0,\infty$ CM and share $a$ IM, then $f\equiv(Δ_η^{n}f)^{(k)}$, which use a completely different method to improve some results due to Chen-Xu [1].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源