论文标题

长短投资组合优化的深度加固学习

Deep Reinforcement Learning for Long-Short Portfolio Optimization

论文作者

Huang, Gang, Zhou, Xiaohua, Song, Qingyang

论文摘要

随着人工智能的快速发展,数据驱动的方法有效地克服了传统投资组合优化的局限性。常规模型主要采用长期的机制,不包括高度相关的资产来多样化风险。但是,合并卖空可以通过对冲相关资产来实现低风险套利。本文构建了深厚的加强学习(DRL)投资组合管理框架,其近似机制符合实际的交易规则,探索了中国A股票市场中超额回报的策略。关键创新包括:(1)在连续交易中开发全面的短销售机制,该机制解释了整个时间段内交易的动态演变; (2)长短优化框架的设计集成了深层神经网络,用于处理具有平均夏普比率奖励功能的多维财务时间序列。经验结果表明,卖空的DRL模型表明了显着的优化能力,在回测期间实现了一致的正回报。与传统方法相比,该模型可提供较高的风险调整后收益,同时减少最大缩水量。从分配的角度来看,DRL模型建立了强大的投资风格,通过战略避免表现不佳的资产和平衡的资本分配来增强防御能力。这项研究为投资组合理论做出了贡献,同时为定量投资实践提供了新颖的方法。

With the rapid development of artificial intelligence, data-driven methods effectively overcome limitations in traditional portfolio optimization. Conventional models primarily employ long-only mechanisms, excluding highly correlated assets to diversify risk. However, incorporating short-selling enables low-risk arbitrage through hedging correlated assets. This paper constructs a Deep Reinforcement Learning (DRL) portfolio management framework with short-selling mechanisms conforming to actual trading rules, exploring strategies for excess returns in China's A-share market. Key innovations include: (1) Development of a comprehensive short-selling mechanism in continuous trading that accounts for dynamic evolution of transactions across time periods; (2) Design of a long-short optimization framework integrating deep neural networks for processing multi-dimensional financial time series with mean Sharpe ratio reward functions. Empirical results show the DRL model with short-selling demonstrates significant optimization capabilities, achieving consistent positive returns during backtesting periods. Compared to traditional approaches, this model delivers superior risk-adjusted returns while reducing maximum drawdown. From an allocation perspective, the DRL model establishes a robust investment style, enhancing defensive capabilities through strategic avoidance of underperforming assets and balanced capital allocation. This research contributes to portfolio theory while providing novel methodologies for quantitative investment practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源