论文标题
$ k $ - 用户干扰渠道的自由度在智能反射表面的存在下
Degrees of Freedom of the $K$-User Interference Channel in the Presence of Intelligent Reflecting Surfaces
论文作者
论文摘要
在本文中,我们研究了在存在智能反射表面(IRSS)的情况下,时间选择性$ k $ - 用户干扰渠道的自由度(DOF)区域和总和DOF。我们考虑四种类型的IRS,即1)活跃的IRS,能够扩大,衰减并添加相移到接收的信号,2)被动IRS,能够衰减并增加接收信号的相位转移,3)无源损失IRS,只能向接收的信号添加相位,以及无效的信号,以及4)$ \ varepsy $ \ varepsir,将接收的信号缩放在$ 1- \ varepsilon $和$ 1 $之间的数字外,此外还增加了相移。在存在主动IRS的情况下,我们得出了DOF区域的内部和外部边界,以及$ K $ - 用户干扰通道的总和和上限,并证明如果IRS元素的数量超过一定的有限值,则可以实现总和DOF的最大值$ k $。然后,我们为DOF区域引入概率的内部和外部边界,并在被动IRS存在下的$ k $ - 用户干扰通道的总和下限和上限,并证明,$ k $的下部界限是$ k $作为IRS元素的数量,而IRS元素的数量越来越大。对于被动无损IRS的DOF分析,首先,我们通过$ \ varepsilon $ relaxed无源无损IRS近似它,并引入了相应的总和DOF的概率下限。我们证明,这种渐近趋向于$ k $。此外,我们定义了一种轻松的DOF类型,称为$ρ$有限的DOF。我们引入了一个被动无损IRS辅助$ k $ - 用户干扰渠道的$ρ$有限的总和DOF的下限,并证明这种渐近下限也倾向于$ k $。
In this paper, we study the degrees of freedom (DoF) region and sum DoF of the time-selective $K$-user interference channel in the presence of intelligent reflecting surfaces (IRSs). We consider four types of IRSs, namely 1) active IRSs, which are able to amplify, attenuate, and add a phase shift to the received signal, 2) passive IRSs, which are able to attenuate and add a phase shift to the received signal, 3) passive lossless IRSs, which are only able to add a phase shift to the received signal, and 4) $\varepsilon$-relaxed passive lossless IRSs, which are able to scale the received signal by a number between $1-\varepsilon$ and $1$ in addition to adding a phase shift. We derive inner and outer bounds for the DoF region and lower and upper bounds for the sum DoF of the $K$-user interference channel in the presence of an active IRS and prove that the maximum value $K$ for the sum DoF can be achieved if the number of IRS elements exceeds a certain finite value. Then, we introduce probabilistic inner and outer bounds for the DoF region and probabilistic lower and upper bounds for the sum DoF of the $K$-user interference channel in the presence of a passive IRS and prove that the lower bound for the sum DoF asymptotically approaches $K$ as the number of IRS elements grows large. For the DoF analysis of passive lossless IRSs, first, we approximate it by the $\varepsilon$-relaxed passive lossless IRS and introduce a probabilistic lower bound for the corresponding sum DoF. We prove that this bound asymptotically tends to $K$. In addition, we define a relaxed type of DoF called $ρ$-limited DoF. We introduce a lower bound for the $ρ$-limited sum DoF of the passive lossless IRS-assisted $K$-user interference channel and prove that this lower bound asymptotically also tends to $K$.