论文标题

基于上演树模型的新的生成分类器

A new class of generative classifiers based on staged tree models

论文作者

Carli, Federico, Leonelli, Manuele, Varando, Gherardo

论文摘要

分类的生成模型使用类变量的联合概率分布和功能来构建决策规则。在生成模型中,贝叶斯网络和天真的贝叶斯分类器是最常用的,并提供了所有变量之间关系的明确图形表示。但是,这些缺点是高度限制可能存在的关系的类型,而不允许特定于上下文的独立性。在这里,我们介绍了一种新的生成分类器类别,称为“分阶性树分类器”,该分类器正式考虑了特定于上下文的独立性。它们是通过对事件树的顶点的分区进行构建的,可以正式读取条件独立性。还定义了天真的阶段树分类器,该分类器扩展了经典的天真贝叶斯分类器,同时保持相同的复杂性。一项广泛的仿真研究表明,分级分类器的分类准确性与最先进的分类器的分类精度具有竞争力,并且一个示例展示了它们在实践中的使用。

Generative models for classification use the joint probability distribution of the class variable and the features to construct a decision rule. Among generative models, Bayesian networks and naive Bayes classifiers are the most commonly used and provide a clear graphical representation of the relationship among all variables. However, these have the disadvantage of highly restricting the type of relationships that could exist, by not allowing for context-specific independences. Here we introduce a new class of generative classifiers, called staged tree classifiers, which formally account for context-specific independence. They are constructed by a partitioning of the vertices of an event tree from which conditional independence can be formally read. The naive staged tree classifier is also defined, which extends the classic naive Bayes classifier whilst retaining the same complexity. An extensive simulation study shows that the classification accuracy of staged tree classifiers is competitive with that of state-of-the-art classifiers and an example showcases their use in practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源