论文标题

基于加权的治疗效应估计通过分配学习

Weighting-Based Treatment Effect Estimation via Distribution Learning

论文作者

Zhang, Dongcheng, Zhang, Kunpeng

论文摘要

现有的加权方法用于治疗效果估计通常是基于倾向得分或协变量平衡的想法。他们通常对治疗分配或结果模型进行强有力的假设,以获得无偏见的估计,例如线性或特定的功能形式,这很容易导致模型错误指定的主要缺点。在本文中,我们旨在通过开发基于分布学习的加权方法来减轻这些问题。我们首先了解以治疗分配为条件的协变量的真实潜在分布,然后利用治疗组中协变量密度与对照组的比例作为估计治疗效果的权重。具体而言,我们建议通过变量通过可逆转换来近似处理组和对照组中的协变量分布。为了证明我们方法的优势,鲁棒性和概括性,我们使用合成和真实数据进行了广泛的实验。从实验结果中,我们发现,通过观察数据估算对治疗(ATT)的平均治疗效果的方法优于几种尖端的加权方法,仅优于基准测试方法,并且在双重弹性估计框架下,它保持了其优势,该估计框架将权重与一些先进的结果建模方法结合在一起。

Existing weighting methods for treatment effect estimation are often built upon the idea of propensity scores or covariate balance. They usually impose strong assumptions on treatment assignment or outcome model to obtain unbiased estimation, such as linearity or specific functional forms, which easily leads to the major drawback of model mis-specification. In this paper, we aim to alleviate these issues by developing a distribution learning-based weighting method. We first learn the true underlying distribution of covariates conditioned on treatment assignment, then leverage the ratio of covariates' density in the treatment group to that of the control group as the weight for estimating treatment effects. Specifically, we propose to approximate the distribution of covariates in both treatment and control groups through invertible transformations via change of variables. To demonstrate the superiority, robustness, and generalizability of our method, we conduct extensive experiments using synthetic and real data. From the experiment results, we find that our method for estimating average treatment effect on treated (ATT) with observational data outperforms several cutting-edge weighting-only benchmarking methods, and it maintains its advantage under a doubly-robust estimation framework that combines weighting with some advanced outcome modeling methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源