论文标题

动态系统的神经闭合模型

Neural Closure Models for Dynamical Systems

论文作者

Gupta, Abhinav, Lermusiaux, Pierre F. J.

论文摘要

复杂的动态系统用于许多域中的预测。由于计算成本,模型被截断,粗糙或汇总。随着被忽视和未解决的术语变得重要,模型预测的实用性减少了。我们开发了一种新颖,多功能和严格的方法,以使用来自高保真模拟的数据来学习已知的物理/低保真模型的非马克维亚闭合参数化。新的“神经闭合模型”增强了具有神经延迟微分方程(NDDES)的低保真模型,该模型是由Mori-Zwanzig配方和复杂动力学系统中固有延迟的动机所激发的。我们证明,神经闭合有效地解释了减少阶模式中的截断模式,捕获了粗模型中亚网格尺度过程的影响,并增强了复杂的生物学和物理生物地球化学模型的简化。我们发现,在马尔可夫封口上使用非马克维亚人可以提高长期预测准确性,并且需要较小的网络。对于任何时间整合方案并允许不均匀间隔的时间训练数据,我们得出了有效地实现新离散和分布式NDDE所需的伴随方程和网络体系结构。使用信息理论解释了离散在封闭模型中分布式延迟的性能,我们为指定体系结构找到了最佳的过去信息。最后,我们分析了计算复杂性,并解释了由于神经封闭模型而导致的额外成本有限。

Complex dynamical systems are used for predictions in many domains. Because of computational costs, models are truncated, coarsened, or aggregated. As the neglected and unresolved terms become important, the utility of model predictions diminishes. We develop a novel, versatile, and rigorous methodology to learn non-Markovian closure parameterizations for known-physics/low-fidelity models using data from high-fidelity simulations. The new "neural closure models" augment low-fidelity models with neural delay differential equations (nDDEs), motivated by the Mori-Zwanzig formulation and the inherent delays in complex dynamical systems. We demonstrate that neural closures efficiently account for truncated modes in reduced-order-models, capture the effects of subgrid-scale processes in coarse models, and augment the simplification of complex biological and physical-biogeochemical models. We find that using non-Markovian over Markovian closures improves long-term prediction accuracy and requires smaller networks. We derive adjoint equations and network architectures needed to efficiently implement the new discrete and distributed nDDEs, for any time-integration schemes and allowing nonuniformly-spaced temporal training data. The performance of discrete over distributed delays in closure models is explained using information theory, and we find an optimal amount of past information for a specified architecture. Finally, we analyze computational complexity and explain the limited additional cost due to neural closure models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源