论文标题
在某些Deza循环图的WL级和WL维度上
On WL-rank and WL-dimension of some Deza circulant graphs
论文作者
论文摘要
Digraph $γ$的WL级定义为$γ$连贯配置的等级。 $γ$的WL维度定义为最小的正整数$ m $,$γ$由$ m $ nigumiention weisfeiler-leman算法确定。我们将WL级别$ 4 $的DEZA循环图表分类。另外,事实证明,这些图中的每一个最多都有$ 3 $。最后,我们确定了一些Deza循环图的家属的WL级别$ 5 $或6美元,而WL-Dimension最多$ 3 $。
The WL-rank of a digraph $Γ$ is defined to be the rank of the coherent configuration of $Γ$. The WL-dimension of $Γ$ is defined to be the smallest positive integer $m$ for which $Γ$ is identified by the $m$-dimensional Weisfeiler-Leman algorithm. We classify the Deza circulant graphs of WL-rank $4$. In additional, it is proved that each of these graphs has WL-dimension at most $3$. Finally, we establish that some families of Deza circulant graphs have WL-rank $5$ or $6$ and WL-dimension at most $3$.