论文标题
SG-NET:语法指导变压器用于语言表示
SG-Net: Syntax Guided Transformer for Language Representation
论文作者
论文摘要
了解人类语言是人工智能的关键主题之一。对于语言表示,从细节上详细且冗长的文本中有效建模语言知识并摆脱噪音的能力对于提高其性能至关重要。传统的专心模型在没有明确限制的情况下处理所有单词,这导致对某些可用单词的注意力不准确。在这项工作中,我们建议使用语法通过将显式句法约束纳入注意力机制,从而指导文本建模。详细说明,对于基于变压器的编码器(SAN)赞助的编码器,我们将感兴趣的句法依赖性(SDOI)设计引入SAN中,以形成具有语法指导的自我注意的SDOI-SAN。然后,语法指导的网络(SG-NET)由此额外的SDOI-SAN和SAN组成,而SAN则通过双重上下文体系结构从原始的变压器编码器组成,以获得更好的语言学启发的表示。提出的SG-NET应用于典型的变压器编码器。关于流行基准任务的广泛实验,包括机器阅读理解,自然语言推断和神经机器翻译,显示了拟议的SG-NET设计的有效性。
Understanding human language is one of the key themes of artificial intelligence. For language representation, the capacity of effectively modeling the linguistic knowledge from the detail-riddled and lengthy texts and getting rid of the noises is essential to improve its performance. Traditional attentive models attend to all words without explicit constraint, which results in inaccurate concentration on some dispensable words. In this work, we propose using syntax to guide the text modeling by incorporating explicit syntactic constraints into attention mechanisms for better linguistically motivated word representations. In detail, for self-attention network (SAN) sponsored Transformer-based encoder, we introduce syntactic dependency of interest (SDOI) design into the SAN to form an SDOI-SAN with syntax-guided self-attention. Syntax-guided network (SG-Net) is then composed of this extra SDOI-SAN and the SAN from the original Transformer encoder through a dual contextual architecture for better linguistics inspired representation. The proposed SG-Net is applied to typical Transformer encoders. Extensive experiments on popular benchmark tasks, including machine reading comprehension, natural language inference, and neural machine translation show the effectiveness of the proposed SG-Net design.