论文标题
基于谎言代数的方法,用于一般相对论中的渐近对称性
A Lie algebra based approach to asymptotic symmetries in general relativity
论文作者
论文摘要
黑洞空位的渐近对称性已引起了很多关注,这是黑洞热力学中Bekenstein-Hawking熵的可能起源。通常,要在公制上找到适当的渐近条件和谎言代数,从而产生与相应指控是可集成的对称性的转换。我们在这里提出了一种替代方法,以构建给定时空度量的渐近对称性构建块。我们的算法方法可能使在任何时空中探索渐近对称性更容易,而不是在常规方法中。作为显式应用,我们分析了Rindler Horizon上的渐近对称性。我们发现了一类新的对称性,与时间和垂直于地平线的方向相关的扩张转换有关,我们将其称为超丝。
Asymptotic symmetries of black hole spacetimes have received much attention as a possible origin of the Bekenstein-Hawking entropy in black hole thermodynamics. In general, it takes hard efforts to find appropriate asymptotic conditions on a metric and a Lie algebra generating the transformation of symmetries with which the corresponding charges are integrable. We here propose an alternative approach to construct building blocks of asymptotic symmetries of a given spacetime metric. Our algorithmic approach may make it easier to explore asymptotic symmetries in any spacetime than in conventional approaches. As an explicit application, we analyze the asymptotic symmetries on Rindler horizon. We find a new class of symmetries related with dilatation transformations in time and in the direction perpendicular to the horizon, which we term superdilatations.