论文标题
通过电子健康记录的死亡率预测的异质图嵌入深度学习
Deep Learning with Heterogeneous Graph Embeddings for Mortality Prediction from Electronic Health Records
论文作者
论文摘要
在重症监护室设置的院内死亡率的计算预测可以帮助临床从业人员指导护理并提早做出干预措施。由于临床数据的结构和组件各不相同,因此需要对建模策略进行持续创新,以识别可以最佳建模结果的体系结构。在这项工作中,我们在电子健康记录数据上训练异类图模型(HGM),并使用所得的嵌入矢量作为添加到卷积神经网络(CNN)模型中的其他信息来预测院内死亡率。我们表明,包括作为嵌入式媒介的时间在内提供的其他信息捕获了医疗概念,实验室测试和诊断之间的关系,从而增强了预测性能。我们发现,将HGM添加到CNN模型可将死亡率预测准确性提高到4 \%。该框架是未来实验的基础,该实验涉及重要的医疗保健预测任务的不同EHR数据类型。
Computational prediction of in-hospital mortality in the setting of an intensive care unit can help clinical practitioners to guide care and make early decisions for interventions. As clinical data are complex and varied in their structure and components, continued innovation of modeling strategies is required to identify architectures that can best model outcomes. In this work, we train a Heterogeneous Graph Model (HGM) on Electronic Health Record data and use the resulting embedding vector as additional information added to a Convolutional Neural Network (CNN) model for predicting in-hospital mortality. We show that the additional information provided by including time as a vector in the embedding captures the relationships between medical concepts, lab tests, and diagnoses, which enhances predictive performance. We find that adding HGM to a CNN model increases the mortality prediction accuracy up to 4\%. This framework serves as a foundation for future experiments involving different EHR data types on important healthcare prediction tasks.