论文标题

通过深度学习使用Height Map重建对颜色底面图像的黄斑分析

Analysis of Macula on Color Fundus Images Using Heightmap Reconstruction Through Deep Learning

论文作者

Tahghighi, Peyman, Zoroofi, Reza A., Safi, Sare, Ramezani, Alireza

论文摘要

对于基于视网膜图像的医学诊断,通常需要对3D结构有清晰的了解,但是由于捕获的图像的2D性质,我们无法推断出该信息。但是,通过利用3D重建方法,我们可以在眼底图像上恢复黄斑区域的高度信息,这有助于诊断和筛查黄斑疾病。最近的方法已使用阴影信息进行高度图预测,但是它们的输出不准确,因为它们忽略了附近像素之间的依赖性,并且仅使用了阴影信息。此外,其他方法取决于在实践中无法使用的视网膜的多个图像的可用性。在本文中,以条件生成的对抗网络(CGAN)和深入监督网络的成功进行,我们为发电机提出了一种新颖的体系结构,可以增强通过渐进式改进和使用深度监督来重建颜色金融图像上黄斑的高度信息的细节和输出质量。在我们自己的数据集上进行比较表明,所提出的方法优于图像翻译和医疗图像翻译中的所有最新方法。此外,感知研究还表明,所提出的方法可以为眼科医生提供其他信息进行诊断。

For medical diagnosis based on retinal images, a clear understanding of 3D structure is often required but due to the 2D nature of images captured, we cannot infer that information. However, by utilizing 3D reconstruction methods, we can recover the height information of the macula area on a fundus image which can be helpful for diagnosis and screening of macular disorders. Recent approaches have used shading information for heightmap prediction but their output was not accurate since they ignored the dependency between nearby pixels and only utilized shading information. Additionally, other methods were dependent on the availability of more than one image of the retina which is not available in practice. In this paper, motivated by the success of Conditional Generative Adversarial Networks(cGANs) and deeply supervised networks, we propose a novel architecture for the generator which enhances the details and the quality of output by progressive refinement and the use of deep supervision to reconstruct the height information of macula on a color fundus image. Comparisons on our own dataset illustrate that the proposed method outperforms all of the state-of-the-art methods in image translation and medical image translation on this particular task. Additionally, perceptual studies also indicate that the proposed method can provide additional information for ophthalmologists for diagnosis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源