论文标题
横向各向异性几何形状中的Biharmonic操作员的逆边界问题
Inverse boundary problems for biharmonic operators in transversally anisotropic geometries
论文作者
论文摘要
我们研究了双旋转操作员一阶扰动的逆边界问题,该尺寸$ n \ ge 3 $的横向横向各向异性riemannian流形。我们表明,只要在横向流形上的地理$ x $ ray变换,就可以从对歧管边界的库奇数据集的知识中的知识中的知识来唯一确定连续的一阶扰动。
We study inverse boundary problems for first order perturbations of the biharmonic operator on a conformally transversally anisotropic Riemannian manifold of dimension $n \ge 3$. We show that a continuous first order perturbation can be determined uniquely from the knowledge of the set of the Cauchy data on the boundary of the manifold provided that the geodesic $X$-ray transform on the transversal manifold is injective.