论文标题
使用深层神经网络从呼吸和咳嗽声中检测COVID-19
Detecting COVID-19 from Breathing and Coughing Sounds using Deep Neural Networks
论文作者
论文摘要
19009年大流行对世界的影响不均匀。尽管工业经济体能够进行追踪病毒传播所需的测试,并且大多避免了完全锁定,但发展中国家仍面临着测试能力的问题。在本文中,我们探讨了深度学习模型的用法,作为一种普遍存在的,低成本的预测试方法,用于从呼吸或用移动设备进行的呼吸或咳嗽中检测Covid-19,或通过网络进行咳嗽。我们适应了使用原始呼吸和咳嗽音频和频谱图的卷积神经网络的合奏,以分类说话者是否感染了COVID-19。使用贝叶斯优化与超频带结合使用的贝叶斯优化,通过自动高参数调整获得不同的模型。所提出的方法的表现优于传统的基线方法。最终,考虑到以严格的独立方式呼吸和咳嗽的最佳测试套装,它通过结合神经网络实现了74.9%的未加权平均召回(UAR)或ROC曲线(AUC)的面积为80.7%。孤立地,呼吸声似乎比咳嗽的声音稍好一些(76.1%vs 73.7%UAR)。
The COVID-19 pandemic has affected the world unevenly; while industrial economies have been able to produce the tests necessary to track the spread of the virus and mostly avoided complete lockdowns, developing countries have faced issues with testing capacity. In this paper, we explore the usage of deep learning models as a ubiquitous, low-cost, pre-testing method for detecting COVID-19 from audio recordings of breathing or coughing taken with mobile devices or via the web. We adapt an ensemble of Convolutional Neural Networks that utilise raw breathing and coughing audio and spectrograms to classify if a speaker is infected with COVID-19 or not. The different models are obtained via automatic hyperparameter tuning using Bayesian Optimisation combined with HyperBand. The proposed method outperforms a traditional baseline approach by a large margin. Ultimately, it achieves an Unweighted Average Recall (UAR) of 74.9%, or an Area Under ROC Curve (AUC) of 80.7% by ensembling neural networks, considering the best test set result across breathing and coughing in a strictly subject independent manner. In isolation, breathing sounds thereby appear slightly better suited than coughing ones (76.1% vs 73.7% UAR).