论文标题
通过消息传播的层次结构表示可靠模型拟合
Hierarchical Representation via Message Propagation for Robust Model Fitting
论文作者
论文摘要
在本文中,我们通过消息传播(HRMP)方法提出了一种新颖的层次表示,以实现强大的模型拟合,该方法同时将共识分析和偏好分析的优势同时估算出来自因差异损坏的数据的多个模型实例的参数,以实现鲁棒模型拟合。我们没有独立分析每个数据点或每个模型假设的信息,而是将共识信息和偏好信息作为层次表示形式,以减轻对总离群的敏感性。具体而言,我们首先构建一个分层表示,该表示由模型假设层和数据点层组成。模型假设层用于删除微不足道的模型假设,并使用数据点层来删除大离群值。然后,基于层次表示,我们提出了有效的层次结构传播(HMP)算法和改进的亲和力传播(IAP)算法,以修剪无关紧要的顶点,并分别将其余数据点群群。所提出的HRMP不仅可以准确估计多个模型实例的数量和参数,而且还可以处理被大量异常值污染的多结构数据。关于合成数据和真实图像的实验结果表明,就拟合准确性和速度而言,所提出的HRMP显着超过了几种最先进的模型拟合方法。
In this paper, we propose a novel hierarchical representation via message propagation (HRMP) method for robust model fitting, which simultaneously takes advantages of both the consensus analysis and the preference analysis to estimate the parameters of multiple model instances from data corrupted by outliers, for robust model fitting. Instead of analyzing the information of each data point or each model hypothesis independently, we formulate the consensus information and the preference information as a hierarchical representation to alleviate the sensitivity to gross outliers. Specifically, we firstly construct a hierarchical representation, which consists of a model hypothesis layer and a data point layer. The model hypothesis layer is used to remove insignificant model hypotheses and the data point layer is used to remove gross outliers. Then, based on the hierarchical representation, we propose an effective hierarchical message propagation (HMP) algorithm and an improved affinity propagation (IAP) algorithm to prune insignificant vertices and cluster the remaining data points, respectively. The proposed HRMP can not only accurately estimate the number and parameters of multiple model instances, but also handle multi-structural data contaminated with a large number of outliers. Experimental results on both synthetic data and real images show that the proposed HRMP significantly outperforms several state-of-the-art model fitting methods in terms of fitting accuracy and speed.