论文标题

对噪声和B值分析的信号,以实现大脑中最佳的体内不一致运动成像

Signal to Noise and b-value Analysis for Optimal Intra-Voxel Incoherent Motion Imaging in the Brain

论文作者

Merisaari, Harri, Federau, Christian

论文摘要

玻璃体内部不相干运动(IVIM)是一种可以提供有关人体,体内且没有对比剂的灌注的定量信息。不幸的是,已知IVIM灌注参数图在大脑中相对嘈杂,尤其是伪扩散系数,这可能会阻碍其在临床应用中的潜在广泛使用。因此,我们研究了在大脑中产生最佳IVIM灌注图像的条件。 IVIM成像是在四名健康志愿者的3台临床系统上进行的,其中16 B值0、10、20、40、80、110、140、140、100、300、300、400、400、500、500、600、700、800、900 s/mm2重复20次。我们分析了迹线图像的噪声特性,这是B值的函数,以及在获得的B值的平均数量和子集跨IVIM参数图的均匀性。我们发现痕量图像的两个噪声峰是B值的函数,一个是由于高b值处的热噪声引起的,另一个是由于低B值处的生理噪声引起的。发现B值分布的选择对IVIM参数图的同质性具有更高的影响,而不是平均数量。基于评估,我们建议对12分钟扫描的最佳B值采集方案为0(7),20(4),140(19),300(9),500(19),700(1),800(4),900(1)S/MM2。

Intravoxel incoherent motion (IVIM) is a method that can provide quantitative information about perfusion in the human body, in vivo, and without contrast agent. Unfortunately, the IVIM perfusion parameter maps are known to be relatively noisy in the brain, in particular for the pseudo-diffusion coefficient, which might hinder its potential broader use in clinical applications. Therefore, we studied the conditions to produce optimal IVIM perfusion images in the brain. IVIM imaging was performed on a 3-Tesla clinical system in four healthy volunteers, with 16 b values 0, 10, 20, 40, 80, 110, 140, 170, 200, 300, 400, 500, 600, 700, 800, 900 s/mm2, repeated 20 times. We analyzed the noise characteristics of the trace images as a function of b-value, and the homogeneity of the IVIM parameter maps across number of averages and sub-sets of the acquired b values. We found two peaks of noise of the trace images as function of b value, one due to thermal noise at high b-value, and one due to physiological noise at low b-value. The selection of b value distribution was found to have higher impact on the homogeneity of the IVIM parameter maps than the number of averages. Based on evaluations, we suggest an optimal b value acquisition scheme for a 12 min scan as 0 (7), 20 (4), 140 (19), 300 (9), 500 (19), 700 (1), 800 (4), 900 (1) s/mm2.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源