论文标题

用于指数信号重建的稀疏模型启发的深阈值网络 - 在快速生物学光谱中应用

A Sparse Model-inspired Deep Thresholding Network for Exponential Signal Reconstruction -- Application in Fast Biological Spectroscopy

论文作者

Wang, Zi, Guo, Di, Tu, Zhangren, Huang, Yihui, Zhou, Yirong, Wang, Jian, Feng, Liubin, Lin, Donghai, You, Yongfu, Agback, Tatiana, Orekhov, Vladislav, Qu, Xiaobo

论文摘要

非均匀抽样是实现快速获取的强大方法,但需要复杂的重建算法。一般信号处理和许多应用中,高度期望部分采样指数的忠实重建。深度学习表明在这一领域的潜力令人惊讶,但许多现有问题(例如缺乏鲁棒性和解释性)极大地限制了其应用。在这项工作中,通过结合基于稀疏模型的优化方法和数据驱动的深度学习的优点,我们提出了一种深度学习体系结构,以通过称为Modern的无效数据进行光谱重建。它遵循迭代重建,以求解稀疏模型来构建神经网络,我们精心设计了可学习的软阈值,以自适应地消除了底漆采样引入的光谱文物。合成数据和生物学数据的广泛结果表明,现代可以比最新方法更强大,高保真和超快速重建。值得注意的是,现代具有少量的网络参数,并且在各种情况下都可以很好地培训了合成数据,同时将其推广到生物学数据。此外,我们将其扩展到开放式且易于使用的云计算平台(XCloud-Modern),为进一步开发生物应用提供了有前途的策略。

The non-uniform sampling is a powerful approach to enable fast acquisition but requires sophisticated reconstruction algorithms. Faithful reconstruction from partial sampled exponentials is highly expected in general signal processing and many applications. Deep learning has shown astonishing potential in this field but many existing problems, such as lack of robustness and explainability, greatly limit its applications. In this work, by combining merits of the sparse model-based optimization method and data-driven deep learning, we propose a deep learning architecture for spectra reconstruction from undersampled data, called MoDern. It follows the iterative reconstruction in solving a sparse model to build the neural network and we elaborately design a learnable soft-thresholding to adaptively eliminate the spectrum artifacts introduced by undersampling. Extensive results on both synthetic and biological data show that MoDern enables more robust, high-fidelity, and ultra-fast reconstruction than the state-of-the-art methods. Remarkably, MoDern has a small number of network parameters and is trained on solely synthetic data while generalizing well to biological data in various scenarios. Furthermore, we extend it to an open-access and easy-to-use cloud computing platform (XCloud-MoDern), contributing a promising strategy for further development of biological applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源