论文标题
在有限温度下沮丧的量子旋转:伪马约拉娜功能RG方法
Frustrated Quantum Spins at finite Temperature: Pseudo-Majorana functional RG approach
论文作者
论文摘要
事实证明,伪柔性功能重新归一化组(PFFRG)方法是一种强大的数值方法来治疗沮丧的量子自旋系统。然而,在通常的实施中,复杂的旋转操作员的典型表示表示,介绍了非物理的希尔伯特空间扇区,该扇区在有限温度不准确的情况下呈现应用。在这项工作中,我们基于Majorana fermions制定了一种一般的功能重新归一化组方法,以克服这些困难。特别是,我们通过$ SO(3)$对称Majorana表示,该旋转操作员不会引入任何非物理状态,因此仍然适用于有限温度下的量子自旋模型。我们将这种方案(称为伪主要的功能重新归一化组(PMFRG)方法)应用于小型自旋簇以及方形和三角形晶格上的Heisenberg模型。计算自旋相关和热力学量(例如自由能和热容量)的有限温度行为,我们发现与精确的对角线化和高温序列膨胀至中等温度相吻合。尤其是,与有限温度下的PFFRG相比,我们观察到PMFRG的准确性显着提高。更普遍地,我们得出的结论是,功能重归其化组的发展方法大大扩展了此类方法的适用性范围。
The pseudofermion functional renormalization group (PFFRG) method has proven to be a powerful numerical approach to treat frustrated quantum spin systems. In its usual implementation, however, the complex fermionic representation of spin operators introduces unphysical Hilbert space sectors which renders an application at finite temperatures inaccurate. In this work, we formulate a general functional renormalization group approach based on Majorana fermions to overcome these difficulties. We, particularly, implement spin operators via an $SO(3)$ symmetric Majorana representation which does not introduce any unphysical states and, hence, remains applicable to quantum spin models at finite temperatures. We apply this scheme, dubbed pseudo Majorana functional renormalization group (PMFRG) method, to frustrated Heisenberg models on small spin clusters as well as square and triangular lattices. Computing the finite temperature behavior of spin correlations and thermodynamic quantities such as free energy and heat capacity, we find good agreement with exact diagonalization and the high-temperature series expansion down to moderate temperatures. We, particularly, observe a significantly enhanced accuracy of the PMFRG compared to the PFFRG at finite temperatures. More generally, we conclude that the development of functional renormalization group approaches with Majorana fermions considerably extends the scope of applicability of such methods.