论文标题

随机基础流动不确定性的输入输出分析

Input-output analysis of stochastic base flow uncertainty

论文作者

Hewawaduge, Dhanushki, Zare, Armin

论文摘要

我们采用输入输出方法来分析持续的白色 - 时间结构化随机流动流扰动对线性化navier-Stokes方程的平均水平属性的影响。这种基本流量变化将线性化动力学作为不确定性的乘法来源,可以改变线性化动力学的稳定性及其对外源激发的接受能力。我们的方法不依赖于昂贵的随机模拟或基于伴随的灵敏度分析。我们为均方稳定性提供了可验证的条件,并研究了使用通用Lyapunov方程的解决方案的流动频率响应对不确定性和多样化的不确定性来源的频率响应。对于小振幅基碱流扰动,我们绕开了通过采用扰动分析来求解大型广义的Lyapunov方程的需求。我们使用我们的框架来研究过渡平行流中随机基础流量变化的不稳定影响,以及湍流通道流中数值估计的平均速度曲线的可靠性。我们揭示了严重不稳定的扰动方差的雷诺数缩放,并证明了基本流量调制的壁正态形状如何影响各个长度尺度的扩增。此外,我们通过分析管理方程的动力学结构以及能量谱的雷诺数依赖性,来解释存在流碱基流量变化的流向条纹的强大扩增。

We adopt an input-output approach to analyze the effect of persistent white-in-time structured stochastic base flow perturbations on the mean-square properties of the linearized Navier-Stokes equations. Such base flow variations enter the linearized dynamics as multiplicative sources of uncertainty that can alter the stability of the linearized dynamics and their receptivity to exogenous excitations. Our approach does not rely on costly stochastic simulations or adjoint-based sensitivity analysis. We provide verifiable conditions for mean-square stability and study the frequency response of the flow subject to additive and multiplicative sources of uncertainty using the solution to the generalized Lyapunov equation. For small-amplitude base flow perturbations, we bypass the need to solve large generalized Lyapunov equations by adopting a perturbation analysis. We use our framework to study the destabilizing effects of stochastic base flow variations in transitional parallel flows, and the reliability of numerically estimated mean velocity profiles in turbulent channel flows. We uncover the Reynolds number scaling of critically destabilizing perturbation variances and demonstrate how the wall-normal shape of base flow modulations can influence the amplification of various length scales. Furthermore, we explain the robust amplification of streamwise streaks in the presence of streamwise base flow variations by analyzing the dynamical structure of the governing equations as well as the Reynolds number dependence of the energy spectrum.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源