论文标题
在傅立叶式代数的$ p $ -Analog的功能属性上
On the functorial properties of the $p$-analog of the Fourier-Stieltjes algebras
论文作者
论文摘要
在本文中,一些已知结果将被概括。首先,将促进傅立叶代数的依从性定理,并将其与此类代数的$ p $ analog相关。接下来,将提供由ARSAC引入的$π$ - 曲面空间的$ p $ -ANALOG,并且通过利用超滤波器理论,将$ p $ - p $ - p $ - p $ -p $ -p $ - analog的$π$ - fourier-fourier Space的$ p $ - p $ -p $ - analog之间的连接之间进行了全面研究。 作为主要结果,将实现傅立叶 - 斯泰尔杰斯代数的$ p $ analog的重要功能属性之一。
In this paper, some known results will be generalized. Firstly, the idempotent theorem on the Fourier-Stieltjes algebra will be promoted and linked to the $p$-analog of such an algebra. Next, the $p$-analog of the $π$-Fourier space introduced by Arsac will be given, and by taking advantage of the theory of ultra filters, the connection between the dual space of the algebra of $p$-pseudofunctions and the $p$-analog of the $π$-Fourier space, will be fully investigated. As the main result, one of the significant and applicable functorial properties of the $p$-analog of the Fourier-Stieltjes algebras will be achieved.