论文标题
仪表理论中的重力波和负宇宙常数
Gravitational waves in gauge theory gravity with a negative cosmological constant
论文作者
论文摘要
在本文中,我们讨论了仪表理论重力的重力波,具有负宇宙常数。仪表理论重力是在仪表公式下的重力理论,在几何代数的语言中。与一般相对性相反,仪表理论中的背景时空是平坦的,量规自由来自以下事实:在时空位移和旋转下,应将物理量方程保持在物理数量方面。与电磁作用类似,量规配方使我们能够将重力解释为背景平均时空上的量规力。描述重力相互作用的动力场是引入的那些位置和旋转规场作为仪表协方差的要求。引力场方程可以从最小动作原理中得出,而动作是由协变量强度构建的规格不变数量的。我们讨论了具有负宇宙常数的场方程的重力波解,并表明这些溶液是彼得罗夫型-N的。我们还通过计算由于引力波的存在而计算最初自由下落巨大粒子的速度变化来讨论速度记忆效应。
In this paper, we discuss the gravitational waves in the context of gauge theory gravity with a negative cosmological constant. The gauge theory gravity is a gravity theory under gauge formulation in the language of geometric algebra. In contrast to general relativity, the background spacetime in gauge theory gravity is flat, the gauge freedom comes from the fact that equations in terms of physical quantities should be kept in a covariant form under spacetime displacement and rotation. Similar to the electromagnetism, the gauge formulation enables us to interpret the gravitational force as a gauge force on the background flat spacetime. The dynamical fields that describe the gravitational interactions are those position and rotation gauge fields introduced as the requirement of the gauge covariance. The gravitational field equations can be derived from the least action principle with the action as a gauge invariant quantity built from the covariant field strength. We discuss the gravitational wave solutions of the field equations with a negative cosmological constant, and show that these solutions are of Petrov type-N. We also discuss the velocity memory effect by calculating the velocity change of an initially free falling massive particle due to the presence of the gravitational waves.