论文标题

NBNET:图像噪声基础学习与子空间投影

NBNet: Noise Basis Learning for Image Denoising with Subspace Projection

论文作者

Cheng, Shen, Wang, Yuzhi, Huang, Haibin, Liu, Donghao, Fan, Haoqiang, Liu, Shuaicheng

论文摘要

在本文中,我们介绍了NBNet,这是一个新颖的图像denoising框架。与以前的作品不同,我们建议从新的角度解决这个具有挑战性的问题:通过图像自适应投影降低噪音。具体来说,我们建议通过在特征空间中学习一组重建基础来训练可以分离信号和噪声的网络。随后,可以通过选择信号子空间的相应基础并将输入投影到此类空间中来实现图像。我们的主要见解是,投影自然可以保持输入信号的局部结构,尤其是对于质地较低或弱质地的区域。为此,我们提出了SSA,这是一种非本地子空间注意模块,旨在学习旨在学习基础生成以及子空间投影。我们进一步将SSA与NBNET合并在一起,NBNET是一个旨在端到端图像DEN的UNET结构化网络。我们对包括SIDD和DND在内的基准进行评估,而NBNET在PSNR和SSIM上实现了最先进的性能,计算成本却大大降低。

In this paper, we introduce NBNet, a novel framework for image denoising. Unlike previous works, we propose to tackle this challenging problem from a new perspective: noise reduction by image-adaptive projection. Specifically, we propose to train a network that can separate signal and noise by learning a set of reconstruction basis in the feature space. Subsequently, image denosing can be achieved by selecting corresponding basis of the signal subspace and projecting the input into such space. Our key insight is that projection can naturally maintain the local structure of input signal, especially for areas with low light or weak textures. Towards this end, we propose SSA, a non-local subspace attention module designed explicitly to learn the basis generation as well as the subspace projection. We further incorporate SSA with NBNet, a UNet structured network designed for end-to-end image denosing. We conduct evaluations on benchmarks, including SIDD and DND, and NBNet achieves state-of-the-art performance on PSNR and SSIM with significantly less computational cost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源