论文标题
量子系统的随机重复测量:量子演化的相关性和拓扑不变性
Randomly repeated measurements on quantum systems: Correlations and topological invariants of the quantum evolution
论文作者
论文摘要
在封闭量子系统的演变过程中,随机重复的测量值为首次检测某个量子状态创建了一系列概率。研究了量子系统返回其初始状态的相关离散监控演变。我们发现,直到首次检测到的平均测量数是整数,即可访问的希尔伯特空间的维度。此外,平均检测到的返回时间等于连续测量之间的平均时间步长,平均测量数量。因此,平均检测到的返回时间与可访问的希尔伯特空间的维度线性缩放。这项工作的主要目的是解释按量化浆果阶段进行平均返回时间的量化。
Randomly repeated measurements during the evolution of a closed quantum system create a sequence of probabilities for the first detection of a certain quantum state. The related discrete monitored evolution for the return of the quantum system to its initial state is investigated. We found that the mean number of measurements until the first detection is an integer, namely the dimensionality of the accessible Hilbert space. Moreover, the mean first detected return time is equal to the average time step between successive measurements times the mean number of measurements. Thus, the mean first detected return time scales linearly with the dimensionality of the accessible Hilbert space. The main goal of this work is to explain the quantization of the mean return time in terms of a quantized Berry phase.