论文标题

Semglove:Bert手套的语义共同出现

SemGloVe: Semantic Co-occurrences for GloVe from BERT

论文作者

Gan, Leilei, Teng, Zhiyang, Zhang, Yue, Zhu, Linchao, Wu, Fei, Yang, Yi

论文摘要

手套通过利用单词共存在矩阵的统计信息来学习单词嵌入。但是,矩阵中的单词对是从预定义的本地上下文窗口中提取的,这可能会导致单词对和潜在的语义无关的单词对。在本文中,我们提出了semglove,该semglove将语义共同出现从伯特提取到静态手套单词嵌入。特别是,我们提出了两个模型,以基于蒙版语言模型或BERT的多头注意权重提取共发生统计。我们的方法可以提取单词对而不限制本地窗口假设,并且可以通过直接考虑单词对之间的语义距离来定义共发生权重。几个单词相似性数据集和四个外部任务的实验表明,Semglove可以胜过手套。

GloVe learns word embeddings by leveraging statistical information from word co-occurrence matrices. However, word pairs in the matrices are extracted from a predefined local context window, which might lead to limited word pairs and potentially semantic irrelevant word pairs. In this paper, we propose SemGloVe, which distills semantic co-occurrences from BERT into static GloVe word embeddings. Particularly, we propose two models to extract co-occurrence statistics based on either the masked language model or the multi-head attention weights of BERT. Our methods can extract word pairs without limiting by the local window assumption and can define the co-occurrence weights by directly considering the semantic distance between word pairs. Experiments on several word similarity datasets and four external tasks show that SemGloVe can outperform GloVe.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源