论文标题

Minkowsky规范空间中高空曲面的稳定性

Stability of Hypersurfaces in Minkowsky Normed Spaces

论文作者

Haddad, J., Silva, D. O.

论文摘要

我们扩展到Minkowski空间Barbosa和Do Carmo [1]的经典结果,该结果将欧几里得球作为$ \ Mathbb r^n $的独特紧凑型CMC Hypersurface。更确切地说,如果$ k $是$ \ mathbb r^n $的光滑凸体,带有正高斯曲率,包含其内部的起源,而$ m $是一个沉浸式的超出表面,那么对于$ k $而言,存在明确定义的表面积测量,正常矢量场和正常矢量曲率和$ m $的主曲线。因此,我们介绍了有关正常变化的稳定性概念,并计算了相对于$ k $的第二变化公式。最后,我们表明,如果$ m $是紧凑的,具有恒定的Minkowski曲率并且稳定(相对于$ K $),那么$ m $对于$ \ partial k $是同质的。

We extend to Minkowski spaces the classical result of Barbosa and do Carmo [1] that characterizes the euclidean sphere as the unique compact stable CMC hypersurface of $\mathbb R^n$. More precisely, if $K$ is a smooth convex body in $\mathbb R^n$ with positive Gauss curvature, containing the origin in its interior and $M$ is an immersed hypersurface, there are well defined concepts of surface area measure, normal vector field and principal curvatures of $M$ , with respect to $K$. Thus, we introduce the concept of stability with respect to normal variations and compute the formula of second variation with respect to $K$. Finally we show that if $M$ is compact, has constant mean Minkowski curvature and is stable (with respect to $K$) then $M$ is homothetic to $\partial K$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源