论文标题
圆锥形曲线的绞线递归和未成管的不变性
Skein recursion for holomorphic curves and invariants of the unknot
论文作者
论文摘要
我们在$ \ mathbb {c}^3 $或已解决的Conifold中确定单个曲奇lagrangian brane的绞线值gromov-witten分区功能。我们首先以几何形式显示它们必须满足某些绞线理论递归,然后解决该方程。递归是对镜曲线方程的旋转量化量化。该解决方案是预期的挂钩符合公式。
We determine the skein-valued Gromov-Witten partition function for a single toric Lagrangian brane in $\mathbb{C}^3$ or the resolved conifold. We first show geometrically they must satisfy a certain skein-theoretic recursion, and then solve this equation. The recursion is a skein-valued quantization of the equation of the mirror curve. The solution is the expected hook-content formula.