论文标题
Sharpgan:动态场景的接收场块网
SharpGAN: Receptive Field Block Net for Dynamic Scene Deblurring
论文作者
论文摘要
在海上航行时,由于风,波浪和电流的作用,智能船将不可避免地产生摇摆的运动,这使视觉传感器收集的图像显得模糊。这将对基于视觉传感器的对象检测算法产生不利影响,从而影响智能船的导航安全性。为了消除智能船导航期间图像中的运动模糊,我们提出了基于生成对抗网络的新图像脱毛方法。首先,将接收场块网(RFBNET)引入Deblurring网络,以增强网络提取模糊图像特征的能力。其次,我们提出了一个功能损失,该功能损失结合了不同级别的图像特征,以指导网络执行更高质量的脱毛并提高恢复图像和尖锐图像之间的特征相似性。最后,我们建议使用轻型RFB-S模块来改善DeBlurring网络的实时性能。与大规模真实海洋图像数据集和大型Deblurring数据集上的现有脱蓝色方法相比,所提出的方法不仅具有更好的视觉感知和定量标准中的脱张性能,而且具有更高的脱脂效率。
When sailing at sea, the smart ship will inevitably produce swaying motion due to the action of wind, wave and current, which makes the image collected by the visual sensor appear motion blur. This will have an adverse effect on the object detection algorithm based on the vision sensor, thereby affect the navigation safety of the smart ship. In order to remove the motion blur in the images during the navigation of the smart ship, we propose SharpGAN, a new image deblurring method based on the generative adversarial network. First of all, the Receptive Field Block Net (RFBNet) is introduced to the deblurring network to strengthen the network's ability to extract the features of blurred image. Secondly, we propose a feature loss that combines different levels of image features to guide the network to perform higher-quality deblurring and improve the feature similarity between the restored images and the sharp image. Finally, we propose to use the lightweight RFB-s module to improve the real-time performance of deblurring network. Compared with the existing deblurring methods on large-scale real sea image datasets and large-scale deblurring datasets, the proposed method not only has better deblurring performance in visual perception and quantitative criteria, but also has higher deblurring efficiency.