论文标题
拓扑$ r $ - 按压和拓扑压力的免费半群动作
Topological $R$-pressure and topological pressure of free semigroup actions
论文作者
论文摘要
在本文中,我们介绍了拓扑$ r $ $ $ r $ $ r $ r $ $ r $ r $ r $ r $的定义,并在紧凑型公制空间上提供了一些属性。通过偏斜的产品转化为培养基,我们可以获得以下两个主要结果。 1。我们扩展了结果,即拓扑压力是\ cite {c}中拓扑$ r $ pressure的限制到免费的Semigroup Action($ r \ to $ r \至0 $)。 2.令$ f_i,$ $ i = 0,1,\ cdots,m-1 $,在紧凑的度量空间上是同构。对于任何连续函数,我们验证$ f_0,\ cdots,f_ {m-1} $的拓扑压力等于$ f_0^{ - 1}的拓扑压力,\ cdots,f_ {m-1}^{ - 1} $。
In this paper we introduce the definition of topological $r$-pressure of free semigroup actions on compact metric space and provide some properties of it. Through skew-product transformation into a medium, we can obtain the following two main results. 1. We extend the result that the topological pressure is the limit of topological $r$-pressure in\cite{C} to free semigroup actions ($r\to 0$). 2. Let $f_i,$ $i=0, 1, \cdots, m-1$, be homeomorphisms on a compact metric space. For any continuous function, we verify that the topological pressure of $f_0, \cdots, f_{m-1}$ equals the topological pressure of $f_0^{-1}, \cdots, f_{m-1}^{-1}.$