论文标题
在Klein-Gordon-Schrödinger系统的空间分析半径上
On the radius of spatial analyticity for the Klein-Gordon-Schrödinger system
论文作者
论文摘要
在本文中,我们研究了Klein-Gordon-Schrödinger系统的空间分析性的持续性,该解决方案描述了与中性介子场相互作用的核素场的物理系统,并具有分析初始数据。与单个非线性分散方程式不同,非线性色散系统不太了解,因为很难同时显示耦合方程的空间分析性。到目前为止,唯一已知的结果是最新的Dirac-Klein-Gordon系统,该系统在相对论场的情况下由Dirac Spinor场描述了核子时控制物理系统。相比之下,我们的目的是研究在非权利主义制度中起作用的Klein-Gordon-Schrödinger系统。结果表明,随着时间的流逝,溶液的空间分析性的半径是遵循代数下限的半径。
In this paper, we study the persistence of spatial analyticity for the solutions to the Klein-Gordon-Schrödinger system, which describes a physical system of a nucleon field interacting with a neutral meson field, with analytic initial data. Unlike the case of a single nonlinear dispersive equation, not much is known about nonlinear dispersive systems as it is harder to show the spatial analyticity of coupled equations simultaneously. The only results known so far are rather recent ones for the Dirac-Klein-Gordon system which governs the physical system when the nucleon is described by Dirac spinor fields in the case of relativistic fields. In contrast, we aim here to study the Klein-Gordon-Schrödinger system that works in the non-relativistic regime. It is shown that the radius of spatial analyticity of the solutions at later times obeys an algebraic lower bound as time goes to infinity.