论文标题
Xerte:关于时间知识图的可解释推理,以预测未来链接
xERTE: Explainable Reasoning on Temporal Knowledge Graphs for Forecasting Future Links
论文作者
论文摘要
建模时间不断发展的知识图(kgs)最近引起了人们的兴趣越来越大。在这里,图表学习已成为时间kg的链接预测的主要范式。但是,基于嵌入的方法主要以黑盒方式运行,缺乏解释其预测的能力。本文提供了一个链接预测框架,该框架的原因是时间kgs的相关子图,并共同对结构依赖性和时间动力学进行建模。特别是,我们提出了一种时间关系注意机制和一种新颖的反向表示更新方案,以指导围绕查询的封闭子图提取。该子图通过暂时邻居的迭代采样和注意力传播扩展。我们的方法提供了解释预测的人类理解的证据。我们在链接预测任务的四个基准时间知识图上评估了我们的模型。与以前的最佳kg预测方法相比,我们的模型更为可解释,但我们的模型在@1上获得了高达20%的相对提高。我们还与53名受访者进行了一项调查,结果表明,该模型提取的有关链接预测的证据与人类的理解保持一致。
Modeling time-evolving knowledge graphs (KGs) has recently gained increasing interest. Here, graph representation learning has become the dominant paradigm for link prediction on temporal KGs. However, the embedding-based approaches largely operate in a black-box fashion, lacking the ability to interpret their predictions. This paper provides a link forecasting framework that reasons over query-relevant subgraphs of temporal KGs and jointly models the structural dependencies and the temporal dynamics. Especially, we propose a temporal relational attention mechanism and a novel reverse representation update scheme to guide the extraction of an enclosing subgraph around the query. The subgraph is expanded by an iterative sampling of temporal neighbors and by attention propagation. Our approach provides human-understandable evidence explaining the forecast. We evaluate our model on four benchmark temporal knowledge graphs for the link forecasting task. While being more explainable, our model obtains a relative improvement of up to 20% on Hits@1 compared to the previous best KG forecasting method. We also conduct a survey with 53 respondents, and the results show that the evidence extracted by the model for link forecasting is aligned with human understanding.