论文标题
分散探测硅孔双量子点的微波光谱
Dispersively probed microwave spectroscopy of a silicon hole double quantum dot
论文作者
论文摘要
由于门口的忠诚度不断提高,并且由于对工业CMOS技术的潜在转移性,硅自旋量子位已成为争取量子计算的令人信服的选择。在可扩展的体系结构中,每个自旋量子量子都必须精确调整,并且其工作条件必须准确确定。在此前景中,与可扩展设备布局兼容的光谱工具至关重要。在这里,我们报告了一种两色光谱技术,可访问孔依赖的旋转能量水平光谱,该光谱频谱在分裂的硅硅设备中定义的双量子点的孔。第一个GHz频率音调驱动了Valence带旋转轨耦合实现的电偶极自旋共振。第二个低频音调(约500 MHz)允许通过RF-GATE反射仪进行分散读数。我们将测量的分散响应与在扩展的Jaynes-Cummings模型中计算的线性响应进行了比较,并获得了特征参数,例如G因子和隧道/旋转轨道耦合,均以偶数和奇数职业。
Owing to ever increasing gate fidelities and to a potential transferability to industrial CMOS technology, silicon spin qubits have become a compelling option in the strive for quantum computation. In a scalable architecture, each spin qubit will have to be finely tuned and its operating conditions accurately determined. In this prospect, spectroscopic tools compatible with a scalable device layout are of primary importance. Here we report a two-tone spectroscopy technique providing access to the spin-dependent energy-level spectrum of a hole double quantum dot defined in a split-gate silicon device. A first GHz-frequency tone drives electric-dipole spin resonance enabled by the valence-band spin-orbit coupling. A second lower-frequency tone (approximately 500 MHz) allows for dispersive readout via rf-gate reflectometry. We compare the measured dispersive response to the linear response calculated in an extended Jaynes-Cummings model and we obtain characteristic parameters such as g-factors and tunnel/spin-orbit couplings for both even and odd occupation.