论文标题

分散探测硅孔双量子点的微波光谱

Dispersively probed microwave spectroscopy of a silicon hole double quantum dot

论文作者

Ezzouch, Rami, Zihlmann, Simon, Michal, Vincent P., Li, Jing, Aprá, Agostino, Bertrand, Benoit, Hutin, Louis, Vinet, Maud, Urdampilleta, Matias, Meunier, Tristan, Jehl, Xavier, Niquet, Yann-Michel, Sanquer, Marc, De Franceschi, Silvano, Maurand, Romain

论文摘要

由于门口的忠诚度不断提高,并且由于对工业CMOS技术的潜在转移性,硅自旋量子位已成为争取量子计算的令人信服的选择。在可扩展的体系结构中,每个自旋量子量子都必须精确调整,并且其工作条件必须准确确定。在此前景中,与可扩展设备布局兼容的光谱工具至关重要。在这里,我们报告了一种两色光谱技术,可访问孔依赖的旋转能量水平光谱,该光谱频谱在分裂的硅硅设备中定义的双量子点的孔。第一个GHz频率音调驱动了Valence带旋转轨耦合实现的电偶极自旋共振。第二个低频音调(约500 MHz)允许通过RF-GATE反射仪进行分散读数。我们将测量的分散响应与在扩展的Jaynes-Cummings模型中计算的线性响应进行了比较,并获得了特征参数,例如G因子和隧道/旋转轨道耦合,均以偶数和奇数职业。

Owing to ever increasing gate fidelities and to a potential transferability to industrial CMOS technology, silicon spin qubits have become a compelling option in the strive for quantum computation. In a scalable architecture, each spin qubit will have to be finely tuned and its operating conditions accurately determined. In this prospect, spectroscopic tools compatible with a scalable device layout are of primary importance. Here we report a two-tone spectroscopy technique providing access to the spin-dependent energy-level spectrum of a hole double quantum dot defined in a split-gate silicon device. A first GHz-frequency tone drives electric-dipole spin resonance enabled by the valence-band spin-orbit coupling. A second lower-frequency tone (approximately 500 MHz) allows for dispersive readout via rf-gate reflectometry. We compare the measured dispersive response to the linear response calculated in an extended Jaynes-Cummings model and we obtain characteristic parameters such as g-factors and tunnel/spin-orbit couplings for both even and odd occupation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源