论文标题
在线广告中用于用户建模的多通道顺序行为网络
Multi-Channel Sequential Behavior Networks for User Modeling in Online Advertising
论文作者
论文摘要
多个内容提供商依靠本地广告来获取收入,通过将广告放置在其页面的有机内容中。我们将此设置称为``Queryless'',以与用户提交搜索查询并返回相关广告的搜索广告区分开。了解用户意图至关重要,因为相关广告可以改善用户体验,并增加提供对广告商有价值的点击的可能性。 本文介绍了多通道顺序行为网络(MC-SBN),这是一种在语义空间中嵌入用户和广告的深度学习方法,可以评估相关性。我们提出的用户编码器体系结构总结了从多个输入频道的用户活动 - 例如以前的搜索查询,访问的页面或单击广告 - 在用户向量。它使用多个RNN来编码来自不同频道的事件会话序列,然后应用注意机制来创建用户表示。我们方法的一个关键属性是可以逐步维护和更新用户向量,这使得用于大规模服务的可行性。我们在现实世界数据集上进行了广泛的实验。结果表明,MC-SBN可以提高相关广告的排名,并在无查询本机广告设置中提高点击预测和转换预测的性能。
Multiple content providers rely on native advertisement for revenue by placing ads within the organic content of their pages. We refer to this setting as ``queryless'' to differentiate from search advertisement where a user submits a search query and gets back related ads. Understanding user intent is critical because relevant ads improve user experience and increase the likelihood of delivering clicks that have value to our advertisers. This paper presents Multi-Channel Sequential Behavior Network (MC-SBN), a deep learning approach for embedding users and ads in a semantic space in which relevance can be evaluated. Our proposed user encoder architecture summarizes user activities from multiple input channels--such as previous search queries, visited pages, or clicked ads--into a user vector. It uses multiple RNNs to encode sequences of event sessions from the different channels and then applies an attention mechanism to create the user representation. A key property of our approach is that user vectors can be maintained and updated incrementally, which makes it feasible to be deployed for large-scale serving. We conduct extensive experiments on real-world datasets. The results demonstrate that MC-SBN can improve the ranking of relevant ads and boost the performance of both click prediction and conversion prediction in the queryless native advertising setting.