论文标题

Obata在七维四维触点歧管上的第一个特征值定理

The Obata first eigenvalue theorems on a seven dimensional quaternionic contact manifold

论文作者

Mohamed, Abdelrahman, Vassilev, Dimiter

论文摘要

我们表明,尺寸七的紧凑型四基因接触歧管满足Lichnerowicz-type较低的ricci型结合,并且具有$ p $ p $ p $ - p $ unction the Blaplacian非阴性的特征功能,只有在结构是qc-cc-cc-cc-ineinstein的结构时,才能达到其最小可能的特征。特别是,在陈述的条件下,当且仅当歧管与标准$ 3 $ -Sasakian Sphere等效时,才能达到最低特征值。

We show that a compact quaternionic contact manifold of dimension seven that satisfies a Lichnerowicz-type lower Ricci-type bound and has the $P$-function of any eigenfunction of the sub-Laplacian non-negative achieves its smallest possible eigenvalue only if the structure is qc-Einstein. In particular, under the stated conditions, the lowest eigenvalue is achieved if and only if the manifold is qc-equivalent to the standard $3$-Sasakian sphere.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源