论文标题

天文图像集合中的原则点源检测

Principled point-source detection in collections of astronomical images

论文作者

Lang, Dustin, Hogg, David W.

论文摘要

我们回顾了众所周知的匹配滤波器方法,用于检测天文图像中的点源。这表明这是最佳的(即,在非常强的条件下饱和cramer-rao结合):具有完美的背景级别,点传播功能和噪声模型的背景为主的成像中的孤立源。我们表明,匹配的过滤器会产生对所谓点源的亮度的最大样品估计,这导致了一种简单的方法,将多个图像结合在一起 - 通过相同的带通滤波器采集,但具有不同的噪声水平和点传播功能 - - - 生成最佳点源检测图。然后,我们扩展了通过不同带通滤波器拍摄的图像的方法,引入了SED匹配的滤波器,这使我们能够通过不同的过滤器组合图像,但要求我们指定要检测到的对象的颜色。我们表明,这种方法优于传统上使用的某些方法,并且可以将其他传统方法视为与暗示(通常是不合理的)先验的SED匹配过滤的实例。我们提出了贝叶斯的配方,其中包括通量之前,它导致计算成本低的闭合形式表达。

We review the well-known matched filter method for the detection of point sources in astronomical images. This is shown to be optimal (that is, to saturate the Cramer--Rao bound) under stated conditions that are very strong: an isolated source in background-dominated imaging with perfectly known background level, point-spread function, and noise models. We show that the matched filter produces a maximum-likelihood estimate of the brightness of a purported point source, and this leads to a simple way to combine multiple images---taken through the same bandpass filter but with different noise levels and point-spread functions---to produce an optimal point source detection map. We then extend the approach to images taken through different bandpass filters, introducing the SED-matched filter, which allows us to combine images taken through different filters, but requires us to specify the colors of the objects we wish to detect. We show that this approach is superior to some methods traditionally employed, and that other traditional methods can be seen as instances of SED-matched filtering with implied (and often unreasonable) priors. We present a Bayesian formulation, including a flux prior that leads to a closed-form expression with low computational cost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源