论文标题

六边形引导程序在双缩放极限

Hexagon Bootstrap in the Double Scaling Limit

论文作者

Chestnov, Vsevolod, Papathanasiou, Georgios

论文摘要

我们研究平面$ \ Mathcal {n} = 4 $ Super Yang-Mills理论(DS)极限(DS)极限的六颗粒幅度,这是其阳性运动学区域的唯一非平凡的codimension-One边界。我们构建相关的功能空间,该空间由于扩展的Steinmann关系而受到显着限制,以相关形式高达13,而权重12作为显式多粒子表示。在DS极限的共线边界中扩展后者,并使用五角大楼操作员产品扩展,我们计算了通过重量12和八个回路的近代到最大含量侵入幅度的特定成分的无差系数。我们还将结果专门针对重叠的起源限制,观察到其领先差异的一般模式。

We study the six-particle amplitude in planar $\mathcal{N} = 4$ super Yang-Mills theory in the double scaling (DS) limit, the only nontrivial codimension-one boundary of its positive kinematic region. We construct the relevant function space, which is significantly constrained due to the extended Steinmann relations, up to weight 13 in coproduct form, and up to weight 12 as an explicit polylogarithmic representation. Expanding the latter in the collinear boundary of the DS limit, and using the Pentagon Operator Product Expansion, we compute the non-divergent coefficient of a certain component of the Next-to-Maximally-Helicity-Violating amplitude through weight 12 and eight loops. We also specialize our results to the overlapping origin limit, observing a general pattern for its leading divergences.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源