论文标题
太阳能电子的动力学扩展:非常内部地球的传输理论和预测
The Kinetic Expansion of Solar-Wind Electrons: Transport Theory and Predictions for the very Inner Heliosphere
论文作者
论文摘要
我们提出了一种传输理论,用于在地球球中太阳能电子的动力学演化。我们得出了一个陀螺仪平均动力学转运方程,该方程是太阳风的球形膨胀和Parker-Spiral磁场的几何形状。为了求解我们的三维动力学方程,我们开发了一种数学方法,该方法结合了速度空间中的曲柄 - Nicolson方案和配置空间中的有限差分欧拉方案。我们使用各向同性电子分布函数初始化模型,并在5到20太阳半径上计算在中心距离时的动力学扩展。在我们的动力学模型中,电子主要通过弹道粒子流,磁性镜和电场的结合进行进化。通过将拟合到我们的数值结果中,我们量化了电子速度分布的电子strahl和核心部分的参数。 strahl拟合参数表明,电子strahl的密度约为20个太阳半径的距离的总电子密度的7%,strahl块状速度和strahl温度与背景磁场平行于15 solar radii和$β_ {\ parally strally strally strally strally strally strally strally strally与背景磁场的距离近似恒定,\ {\平行的磁力率是clalter s} $。大约在大约0.02的值时以heliipentric距离稳定。我们将结果与Parker太阳能探针测量的数据进行了比较。此外,我们提供了理论上的证据,表明电子strahl并不是在近阳性环境中倾斜的快速磁通/惠斯勒不稳定散布的。
We propose a transport theory for the kinetic evolution of solar-wind electrons in the heliosphere. We derive a gyro-averaged kinetic transport equation that accounts for the spherical expansion of the solar wind and the geometry of the Parker-spiral magnetic field. To solve our three-dimensional kinetic equation, we develop a mathematical approach that combines the Crank--Nicolson scheme in velocity space and a finite-difference Euler scheme in configuration space. We initialize our model with isotropic electron distribution functions and calculate the kinetic expansion at heliocentric distances from 5 to 20 solar radii. In our kinetic model, the electrons evolve mainly through the combination of the ballistic particle streaming, the magnetic mirror force, and the electric field. By applying fits to our numerical results, we quantify the parameters of the electron strahl and core part of the electron velocity distributions. The strahl fit parameters show that the density of the electron strahl is around 7% of the total electron density at a distance of 20 solar radii, the strahl bulk velocity and strahl temperature parallel to the background magnetic field stay approximately constant beyond a distance of 15 solar radii, and $β_{\parallel s}$ (i.e., the ratio between strahl parallel thermal pressure to the magnetic pressure) is approximately constant with heliocentric distance at a value of about 0.02. We compare our results with data measured by Parker Solar Probe. Furthermore, we provide theoretical evidence that the electron strahl is not scattered by the oblique fast-magnetosonic/whistler instability in the near-Sun environment.