论文标题

通过双阶段网络侵蚀的对抗攻击

Adversarial Attack via Dual-Stage Network Erosion

论文作者

Duan, Yexin, Zou, Junhua, Zhou, Xingyu, Zhang, Wu, Zhang, Jin, Pan, Zhisong

论文摘要

深度神经网络容易受到对抗性例子的影响,这些例子可以通过增加微妙的扰动来欺骗深层模型。尽管现有的攻击取得了令人鼓舞的结果,但在黑色框设置下生成可转移的对抗示例仍然还有很长的路要走。为此,本文建议提高对抗性示例的可传递性,并将双阶段特征级扰动应用于现有模型,以隐式创建一组不同的模型。然后,这些模型在迭代过程中被纵向合奏融合在一起。所提出的方法称为双阶段网络侵蚀(DSNE)。我们在非残基和残留网络上进行了全面的实验,并获得了更容易转移的对抗性示例,其计算成本与最新方法相似。特别是,对于剩余网络,可以通过将残留块信息偏向跳过连接来显着改善对抗示例的可传递性。我们的工作为神经网络的建筑脆弱性提供了新的见解,并为神经网络的稳健性带来了新的挑战。

Deep neural networks are vulnerable to adversarial examples, which can fool deep models by adding subtle perturbations. Although existing attacks have achieved promising results, it still leaves a long way to go for generating transferable adversarial examples under the black-box setting. To this end, this paper proposes to improve the transferability of adversarial examples, and applies dual-stage feature-level perturbations to an existing model to implicitly create a set of diverse models. Then these models are fused by the longitudinal ensemble during the iterations. The proposed method is termed Dual-Stage Network Erosion (DSNE). We conduct comprehensive experiments both on non-residual and residual networks, and obtain more transferable adversarial examples with the computational cost similar to the state-of-the-art method. In particular, for the residual networks, the transferability of the adversarial examples can be significantly improved by biasing the residual block information to the skip connections. Our work provides new insights into the architectural vulnerability of neural networks and presents new challenges to the robustness of neural networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源