论文标题
由连续耦合的双量子点在连续和共肺中控制的热传输。
Thermal transport controlled by intra- and inter-dot Coulomb interactions in sequential and cotunneling serially-coupled double quantum dots
论文作者
论文摘要
我们通过串行双重量子点(DQD)研究热电传输,并与两个具有不同热能的金属导线耦合。我们考虑了通过不同的主方程方法的电子顺序和共同渠道效应。在没有库仑内和库仑间相互作用的情况下,在$ e _ {\ rm l} \ text {=} e _ {\ rm rm r} $中找到热电和热电流的小峰左(右)量子点。在存在内部和点间库仑与强度的库仑相互作用的情况下,分别是u $ _ {\ rm intra} $,分别是u $ _ {\ rm Inter} $,避免了内部和跨点两电子状态之间的交叉点或共振能量,发现了2ES,2ES,2ES,2ES。这些共振通过DQD诱导额外的传输通道,导致热电和热电流的强侧峰值$ e _ {\ rm l} \ text { - } $ e _ {\ rm l} \ text {=} e _ {\ rm r} $。库仑相互作用的强度增加了当前的侧峰。有趣的是,当考虑到2ESS的共振时,当前侧峰会通过系统辅助电子共振过程。此外,通过对主方程的不同方法,即Pauli,Redfield,一阶Lindblad以及第一阶和二阶Von-Neumann方法,在DQD-Leads系统中仔细检查了连贯性问题。我们意识到,当相干的作用相关时,Pauli方法给热电传输带来了错误的结果。
We study thermoelectric transport through a serial double quantum dot (DQD) coupled to two metallic leads with different thermal energies. We take into account the electron sequential and cotunneling effects via different master equation approaches. In the absence of intra- and inter-dot Coulomb interactions, a small peak in thermoelectric and heat currents is found for $E_{\rm L} \text{=} E_{\rm R}$ indicating the Coulomb blockade DQD regime, where $E_{\rm L}(E_{\rm R})$ is the energy of the state of the left(right) quantum dot. In the presence of intra- and inter-dot Coulomb interactions with strengths U$_{\rm intra}$, and U$_{\rm inter}$, respectively, avoided crossings or resonance energies between the intra- and the inter-dot two-electron states, 2ES, are found. These resonances induce extra transport channels through the DQD leading to strong side peaks in the thermoelectric and heat currents at $ E_{\rm L} \text{-} E_{\rm R} = \pm (U_{\rm intra} \text{-} U_{\rm inter})$ in addition to the main peak generated at $E_{\rm L} \text{=} E_{\rm R}$. The current side peaks are enhanced by increased strength of the Coulomb interactions. Interestingly, the current side peaks are enhanced when cotunneling terms are considered in which the resonances of the 2ESs assist the electron cotunneling process through the system. Furthermore, the issue of coherences is carefully checked in the DQD-leads system via different approaches to the master equation, which are the Pauli, the Redfield, a first order Lindblad, and the first- and second order von-Neumann methods. We realize that the Pauli method gives a wrong results for the thermoelectric transport when the role of the coherences is relevant.