论文标题
通过软声子激发的光伏效应
Photovoltaic effect by soft phonon excitation
论文作者
论文摘要
光检测是现代通信和传感系统中光电设备的必不可少函数。与近红外/可见区域相反,尽管可能采用了广泛的应用,但在室温下运行的快速和敏感的光电探测器在室温下运行。基于移位电流机制的单相非中心对称材料中的大量光伏效应(BPVE)使降低的能量转化率降低了,因此由于电子状态的量子力学几何阶段而具有瞬时响应。然而,由于本质上高电导率,低能BPVE的小带隙材料不可避免地会遭受热噪声。在这里,我们通过使用Terahertz Light,在原型铁型Batio3中产生电子孔对而没有产生电子孔对引起的移位电流,其能量尺度比电子带隙小三个数量级。在室温下,我们观察到由软音激发与电子激发及其强烈的声子模式依赖性一样大的明显的光电。考虑到第一原则计算支持的位移型铁电型中的电子偶联,可以很好地解释观察到的声子驱动的BPVE的移位电流模型。我们的发现建立了由低能基本激发产生的有效量子BPVE,这表明了高性能Terahertz光电探测器的新原理。
Photodetection is an indispensable function of optoelectronic devices in modern communication and sensing systems. Contrary to the near-infrared/visible regions, the fast and sensitive photodetectors operated at room temperature for the far-infrared/terahertz regions are not well developed despite a possibly vast range of applications. The bulk photovoltaic effect (BPVE) in single-phase noncentrosymmetric materials based on the shift current mechanism enables less-dissipative energy conversion endowed with instantaneous responsivity owing to the quantum-mechanical geometric phase of electronic states. Nevertheless, the small-band-gap material for the low-energy BPVE inevitably suffers from the thermal noise due to the intrinsically high conductivity. Here, we demonstrate the shift current induced by soft-phonon excitations without creation of electron-hole pairs in the archetypal ferroelectric BaTiO3 by using the terahertz light, whose energy scale is three orders of magnitude smaller than the electronic band gap. At and above room temperature, we observe appreciable photocurrents caused by the soft-phonon excitation as large as that for electronic excitation and their strong phonon-mode dependence. The observed phonon-driven BPVE can be well accounted for by the shift current model considering the electron-phonon coupling in the displacement-type ferroelectrics as supported by the first-principles calculation. Our findings establish the efficient quantum BPVE arising from low-energy elementary excitations, suggesting the novel principle for the high-performance terahertz photodetectors.