论文标题

零击的常识性问题通过固定翻译和一致性优化回答

Zero-shot Commonsense Question Answering with Cloze Translation and Consistency Optimization

论文作者

Dou, Zi-Yi, Peng, Nanyun

论文摘要

常识性问题回答(CQA)旨在测试模型是否可以回答有关每个人都知道的常识性知识的问题。合并外部知识库的先前作品显示出令人鼓舞的结果,但是知识库的构建昂贵,并且通常仅限于固定关系。在本文中,我们致力于更好地利用在预训练的语言模型中存储的\ textit {隐式知识}。尽管研究人员发现,可以通过填充精心设计的提示和文本分类的提示的空白来提取嵌入的知识,但仍不清楚我们是否可以在CQA中采用此范式,其中输入和输出采用更灵活的形式。为此,我们研究了四种翻译方法,可以将自然问题转化为固定的句子,以更好地从语言模型中征求常识性知识,包括基于句法的模型,无监督的神经模型和两个受监管的神经模型。此外,为了结合不同的翻译方法,我们建议鼓励使用未标记的数据对不同翻译问题的模型预测之间的一致性。我们在零弹位设置中在三个CQA数据集上演示了我们的方法的有效性。我们表明,我们的方法与知识库改进的模型相辅相成,将它们结合起来可以导致最新的零击性能。分析还揭示了不同披肩翻译方法的不同特征,并提供了为什么组合它们可以带来巨大改进的见解。

Commonsense question answering (CQA) aims to test if models can answer questions regarding commonsense knowledge that everyone knows. Prior works that incorporate external knowledge bases have shown promising results, but knowledge bases are expensive to construct and are often limited to a fixed set of relations. In this paper, we instead focus on better utilizing the \textit{implicit knowledge} stored in pre-trained language models. While researchers have found that the knowledge embedded in pre-trained language models can be extracted by having them fill in the blanks of carefully designed prompts for relation extraction and text classification, it remains unclear if we can adopt this paradigm in CQA where the inputs and outputs take much more flexible forms. To this end, we investigate four translation methods that can translate natural questions into cloze-style sentences to better solicit commonsense knowledge from language models, including a syntactic-based model, an unsupervised neural model, and two supervised neural models. In addition, to combine the different translation methods, we propose to encourage consistency among model predictions on different translated questions with unlabeled data. We demonstrate the effectiveness of our methods on three CQA datasets in zero-shot settings. We show that our methods are complementary to a knowledge base improved model, and combining them can lead to state-of-the-art zero-shot performance. Analyses also reveal distinct characteristics of the different cloze translation methods and provide insights on why combining them can lead to great improvements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源