论文标题
强大而有效的哈密顿学习
Robust and Efficient Hamiltonian Learning
论文作者
论文摘要
随着量子技术的快速发展,数字和模拟量子系统的大小都大大增加。为了更好地控制和理解量子硬件,一个重要的任务是表征相互作用,即学习哈密顿式的互动,这确定了系统的静态和动态属性。传统的汉密尔顿学习方法要么需要昂贵的过程断层扫描或采用不切实际的假设,例如有关哈密顿结构以及系统的地面或热状态的先前信息。在这项工作中,我们提出了一种强大而有效的哈密顿学习方法,该方法仅基于轻度假设来规避这些限制。所提出的方法可以有效地学习任何仅使用短时动力学和本地操作在Pauli基础上稀疏的哈密顿量,而无需有关哈密顿量的任何信息或准备任何特征状态或热状态。该方法具有可扩展的复杂性和关于量子数的失败概率。同时,鉴于存在状态准备和测量误差的存在,并且在一定量的电路和射击噪声方面表现出色。我们在数值上测试具有随机相互作用强度和分子哈密顿量的横向场方法的缩放缩放和估计精度,均具有不同的尺寸和手动添加的噪声。所有这些结果验证了该方法的鲁棒性和功效,为对大量子系统动力学的系统理解铺平了道路。
With the fast development of quantum technology, the sizes of both digital and analog quantum systems increase drastically. In order to have better control and understanding of the quantum hardware, an important task is to characterize the interaction, i.e., to learn the Hamiltonian, which determines both static and dynamic properties of the system. Conventional Hamiltonian learning methods either require costly process tomography or adopt impractical assumptions, such as prior information on the Hamiltonian structure and the ground or thermal states of the system. In this work, we present a robust and efficient Hamiltonian learning method that circumvents these limitations based only on mild assumptions. The proposed method can efficiently learn any Hamiltonian that is sparse on the Pauli basis using only short-time dynamics and local operations without any information on the Hamiltonian or preparing any eigenstates or thermal states. The method has a scalable complexity and a vanishing failure probability regarding the qubit number. Meanwhile, it performs robustly given the presence of state preparation and measurement errors and resiliently against a certain amount of circuit and shot noise. We numerically test the scaling and the estimation accuracy of the method for transverse field Ising Hamiltonian with random interaction strengths and molecular Hamiltonians, both with varying sizes and manually added noise. All these results verify the robustness and efficacy of the method, paving the way for a systematic understanding of the dynamics of large quantum systems.